Nitric Oxide Reduction by Methane over Rh/Al₂O₃ Catalysts

JOHN R. HARDEE¹ AND JOE W. HIGHTOWER²

Department of Chemical Engineering, Rice University, Houston, Texas 77251

Received February 1, 1983; revised October 14, 1983

The mechanism of nitric oxide reduction with methane has been investigated over an alumina-supported rhodium catalyst. A series of kinetic studies were performed using initial rate data obtained in a recirculation reactor. Between 300 and 400°C NO elimination is initially fast over a reduced catalyst, but the reaction rate rapidly decreases due to oxidation of the catalyst surface. The decomposition is apparently a noncatalytic stoichiometric reaction between nitric oxide and surface rhodium atoms. The initial rate of disappearance of NO is adequately described by a dual-site Langmuir–Hinshelwood expression. In presence of reducing agents such as CO or CH₄, oxygen is effectively removed as CO₂ (plus H₂O). In the reduction of NO with CH₄, the initial rate of NO disappearance fits the following empirical rate expression

Rate =
$$Ae^{-E/RT}(P_{NO})^{-0.63}(P_{CH_d})$$

where $A=3.57\times 10^3$ NO/Rh_s·sec·(N/m²)^{0.37} and E=77 kJ/mole. A deuterium isotope effect of 1.9 is observed in the reduction of NO with mixtures of CH₄ and CD₄. This, along with the linear rate dependence on CH₄ partial pressure, indicates that the dissociative adsorption of CH₄ is the rate limiting step of the reaction. An experiment run with a ¹⁵NO, N₂O, and CH₄ mixture indicated that N₂O is not an exclusive *gas phase* intermediate in the pathway to N₂ formation from NO. However, all these results are consistent with N₂O being a true *surface* intermediate. A reaction mechanism is proposed for NO reduction by methane. It is based on the assumption that two adsorbed NO molecules disproportionate to (N₂O)_a + (O)_a. Adsorbed (N₂O)_a either desorbs as N₂O or decomposes to N₂ and (O)_a. The role of the reductant is to remove the strongly adsorbed (O)_a and to keep the catalyst in an active reduced state for NO reaction.

INTRODUCTION

 NO_x in exhaust streams can be reduced to innocuous products by CO, H_2 , NH_3 , hydrocarbons, etc. in the presence of appropriate catalysts. A fundamental understanding of the behavior of NO in the presence of these reductants would be most helpful in developing a catalyst that will more effectively decrease NO_x emissions. Many kinetic and mechanistic studies have appeared on the reduction of NO with CO (I-8), but little work has been done on the reduction with hydrocarbons. Peters and co-workers (9-11) studied the reduction of NO by CH_4 over a zinc-promoted copper chromite catalyst. Their rate data were ex-

plained with a dual-site Langmuir-Hinshelwood expression from which they deduced that the rate limiting step involved the reaction between adjacent NO and CH, molecules. Sotoodehnia-Korrani and Nobe (12) found a similar kinetic expression for the reduction of NO with ethylene over Cu on silica. Ault and Ayen (13) used hydrocarbons varying in length from 1 to 8 carbon atoms to reduce NO over a barium promoted copper chromite catalyst. They reported an empirical rate expression but did not speculate on the reaction mechanism. Hu and Hightower (14) found that a triplesite Langmuir-Hinshelwood rate expression accounted for the disappearance of NO when reduced by methane over Pt/ Al₂O₃. Using isotopic tracers they deduced that the mechanism of NO reduction involves a disproportionation of NO into adsorbed $(N_2O)_a$ and adsorbed oxygen atoms.

¹ Present address: Department of Sciences, Louisiana State University-Eunice, P.O. Box 1129, Eunice, La. 70535.

² To whom correspondence should be sent.

The role of methane is to maintain the catalyst in an active state for NO decomposition by removing adsorbed oxygen from the catalyst

This work involves the reduction of NO with methane over Rh/Al₂O₃ This is an interesting catalyst because it will apparently catalyze NO reduction in the presence of small amounts of oxygen (15, 16), a feat not performed easily by other noble or base metal catalysts, except Ir Also, it is a highly active catalyst for the reduction of NO to N_2 by carbon monoxide (17) and is currently being used in automobile emission control devices Dubois et al (8) studied the mechanism of NO reduction with CO and found that NO dissociates on rhodium CO reacts with an adsorbed oxygen intermediate to form CO₂ Iizuka and Lunsford (7) studied NO reduction with CO over Rh-Y zeolites Finding the reaction to be zero order with respect to CO and 0 4 order with respect to NO, they proposed that the complex (Rh^I(CO₂)NO)⁺ served as a reaction intermediate

It is our objective in this work to study the kinetics and the mechanism of NO reduction with methane over Rh/Al₂O₃ The following reactions are also studied since they are important in the overall mechanism of NO reduction NO decomposition, N₂O decomposition, and the reduction of NO with CO

EXPERIMENTAL PROCEDURES

The supported rhodium catalyst used throughout this work was a commercial preparation from Engelhard Industries It was donated by the Shell Research and Development Co, Houston, Texas The catalyst contained 0.5 wt % rhodium on gamma alumina, had a BET surface area of 84 m²/g, and had a rhodium dispersion of 0.64 when measured by hydrogen chemisorption (Hads/Rhtotal) on a reduced catalyst

Nitric oxide (Matheson Gas Products) was purified by freezing it in a trap at liquid nitrogen temperature and retaining only the center portion of a distillation cut This cen-

ter cut of NO was again frozen at -195°C and degassed for 1 min. The solid NO was warmed slowly until the liquid phase formed, at which time the pumping was terminated. The liquid nitrogen bath was replaced with a dry ice-acetone bath, and the NO was distilled into another trap at -195°C. The contents remaining in the dry ice-acetone trap were discarded. This procedure was repeated four times before the NO was ready for use

¹⁵NO (Prochem B O C Ltd) had a listed purity of 97 2 atom% nitrogen-15 Mass spectral analysis confirmed this purity CH₄ (Phillips Research Grade, listed purity 99 9+%) was passed through a dry ice-acetone trap before being used CD₄ (Merck, Sharp, and Dohme of Canada, Ltd) had a purity of 99 atom% deuterium and was used without further purification. Nitrous oxide (Liquid Carbonic) was first frozen at -195°C and degassed for 1 min It was subjected to four freeze-pump-thaw cycles before it was used H_2 , O_2 , and CO (Matheson Gas Products) were passed through traps at liquid nitrogen temperature before being used

All reactions were carried out in an all-Pyrex recirculation system that has been described elsewhere (18) A key feature of the system was a 2 23 cm³ doser through which known amounts of gases could be added at any time to the circulating reactants. Analysis of reactants and products was achieved with either a GLC (Poropak Q column thermostated at 0°C) or a mass spectrometer (CEC 21-104)

The standard catalyst pretreatment involved a slow heating of the catalyst to 350° C and evacuation to $1.3 \times 10^{-4} \text{ N/m}^2$ Oxygen ($2.0 \times 10^4 \text{ N/m}^2$) was circulated over the catalyst for 30 min at this temperature. After evacuation, the catalyst was heated to 450° C and evacuated again to $1.3 \times 10^{-4} \text{ N/m}^2$. To reduce the catalyst, hydrogen ($2.0 \times 10^4 \text{ N/m}^2$) was circulated over the catalyst for 2 hr at 450° C. The system was evacuated to $1.3 \times 10^{-4} \text{ N/m}^2$ and the catalyst was cooled to the reaction tem-

perature In all cases the reactant gases were well mixed in the recirculation system for 30 min before contacting the catalyst

For isotopic analysis of the CH₄–CD₄ and the ¹⁴N₂O–¹⁵NO–CH₄ reaction mixtures, a capillary bleed fed small amounts of the reacting gases continuously into the mass spectrometer. The sensitivity of the mass spectrometer to each gas was calibrated using an MKS Baratron Pressure Meter type 220-2Al-1. The fragmentation patterns suggested by Schissler *et al.* (19) were used to correct the fragmentation data obtained from CH₃D, CH₂D₂, and CHD₃. The method is based on probability of hydrogen/deuterium loss and was claimed to fit their data well

RESULTS

NO Decomposition

Nitric oxide decomposition was studied between 300 and 400°C over 85 mg of Rh/Al $_2$ O $_3$ The reaction is initially fast over a reduced surface, but it rapidly slows down and almost completely stops after a short time This behavior is shown in Fig 1 The reaction products observed are N $_2$ and N $_2$ O with only N $_2$ O being formed initially Gas phase O $_2$ and NO $_2$ were never observed as products of this reaction

It appears that nitric oxide decomposition involves a stoichiometric reaction between NO and the catalyst which becomes poisoned in some manner after the reaction has proceeded for a short time. The number

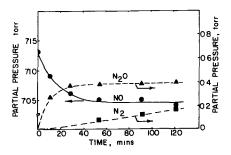


Fig 1 Decomposition of NO over 85 mg reduced Rh/Al_2O_3 in a 400 cm³ batch recirculation reactor at 320°C (1 Torr = 133 3 N/m^2)

of NO molecules that react range from 5 6 \times 10¹⁹ to 14 0 \times 10¹⁹/g of catalyst These numbers are 2 to 7 times greater than the number of exposed rhodium atoms as measured by hydrogen chemisorption—1 9 \times 10¹⁹/g, assuming $H_{ads}/Rh_s=1$ 0

The reaction was carried out over both oxidized and reduced surfaces at 320°C, and the initial rate was about an order of magnitude faster on the reduced surface. The initial rates were determined at conversions below 5%. There is a strong initial rate dependence on NO pressure below 1.3 \times 10³ N/m², but the rate is essentially independent of NO pressure above 1.3 \times 10³ N/m².

N₂O Decomposition

Nitrous oxide decomposition is extremely fast at 320°C over a reduced catalyst, at this temperature the reaction was probably limited by the recirculation rate in the system. In contrast to NO decomposition, however, both O₂ and N₂ are observed as gas phase products. At a lower temperature (150°C) the rates were sufficiently slow that they were not recirculation speed limited, the initial rate of N₂O decomposition versus N₂O pressure is shown in Fig. 2. The rate appears to be near first order in N₂O at low N₂O pressure but approaches zero order at higher N₂O pressure

Addition of only a small amount of oxy-

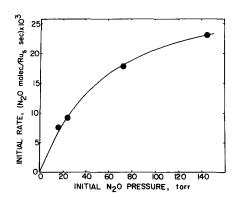


FIG 2 Effect of initial pressure on the initial rate of NO decomposition over 85 mg reduced Rh/Al₂O₃ in a batch recirculation reactor at 320°C

gen decreased the initial N_2O decomposition rate by about a factor of 3. However, the initial rate was not further decreased as the O_2 pressure was increased from 6.7 \times 10² to 8.7 \times 10³ N/m²

N₂O decomposition is fast at 320°C, yet N₂O is observed as a product in NO decomposition and reduction at 320°C In order to understand this, the effect of NO on N₂O decomposition was studied Figure 3 shows the effect of NO on the N₂O decomposition The circles represent an experiment where only N₂O was present in the system The reaction reached 50% conversion in about 50 min at 200°C The triangles represent an experiment in which 4.07×10^{-3} mole of NO were added to the system via the doser 10 min after the reaction began Obviously the NO poisoned the N₂O decomposition, which stopped at about 25% The temperature was too low for reduction of the NO to occur at a measurable rate

Reduction of NO with CO

Since CO is suspected of being a surface intermediate in the reaction of methane with NO (14), we looked at NO reduction with CO over Rh/Al_2O_3 This reaction is very fast at 320°C with the reaction products being N_2 and CO_2 The temperature was dropped to 135°C for kinetic studies, at this temperature N_2O is the major nitrogencontaining gas phase product, along with CO_2 and a small amount of N_2 The reaction

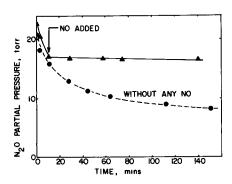


Fig. 3 Effect of NO on N_2O decomposition over 85 mg reduced Rh/Al₂O₃ at 150°C

is zero order with respect to CO and depends on NO to the 0.54 power

NO Reduction with CH₄

With NO as the only reactant, the rhodium catalyst quickly becomes poisoned for NO decomposition (see Fig 1), however, when CH₄ is present in the system the catalyst activity is maintained and NO reduction goes to completion Specifically, at 405°C NO decomposition reaches only about 25% conversion in 24 hr With methane present, NO conversion is complete in about 40 min at this temperature

The effect of changes in temperature, NO pressure, and CH_4 pressure on the rate of NO reduction was measured. In all cases initial rates were determined from conversions below 15% N_2O and N_2 were the only observed nitrogen-containing products. The ratio of N_2O to N_2 is fairly large initially but decreases as the reaction proceeds Other reaction products are CO_2 and H_2O , although H_2O did not appear in the chromatographic effluent because the column was kept at $0^{\circ}C$ Mass spectral analysis of the reaction products confirmed the presence of H_2O

The reaction rate was about 6 times faster on a reduced surface than on an oxidized surface Also, the products CO_2 and H_2O were added to initial reaction mixtures to determine if there were any product poisoning CO_2 had no effect on the reaction rate, but H_2O caused a substantial decrease in catalyst activity For example, only a small amount of H_2O (~1 4 × 10¹⁷ mole-

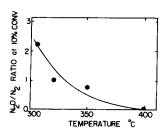


Fig 4 Effect of temperature on N₂O/N₂ ratio at 10% NO conversion during reduction with methane

cules) was needed to decrease the reaction rate by a factor of about 6

Figure 4 shows the ratio of N_2O to N_2 at 10% conversion at different temperatures. The ratio decreases with increasing temperature and becomes zero at 400°C

The observed energy of activation for NO reduction was 79 kJ/mole

CH₄-CD₄ Scrambling

That the catalyst can activate C-H bonds in methane is reflected in its ability to promote hydrogen exchange between CH₄ and CD₄ This reaction was studied over 0 50 g of Rh/Al₂O₃ at 320°C, the results are shown in Fig 5 The equilibrium fractions were calculated from the equation

$$d_{4-t}(\text{Fraction of } CH_tD_{4-t}) = \frac{\binom{t}{4}\binom{H}{D}_f^t}{\sum_{t=0}^{4} \binom{t}{4}\binom{H}{D}_f^t}$$

where $(H/D)_f$ is the final (H/D) ratio in the system Initially the exchange is rapid with multiple exchange taking place. All three products d_1 , d_2 , and d_3 are present from the initial stages of the reaction

Although the reaction is fast, the presence of NO and/or N_2O poisons the exchange Figure 6 shows the effect of adding NO during the exchange reaction At t = 10 min, 3 87 mmole of NO were introduced into the system via the doser. The exchange

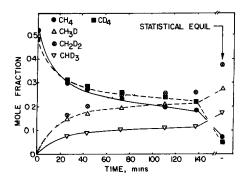
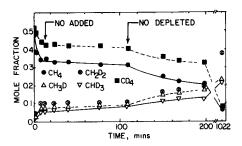



FIG 5 Intermolecular H/D scrambling between CH₄ and CD₄ during reaction over 0.5 g Rh/Al₂O₃ at 320°C in a batch recirculation reactor

Ftg 6 Effect of NO on CH₄/CD₄ scrambling over 0 5 g Rh/Al₂O₃ at 320°C

between CH₄ and CD₄ completely stopped until all the NO was reduced. At that time the exchange reaction began again but at a slower rate than was observed initially, probably due to adsorbed H₂O and oxygen atoms. Addition of N₂O also impeded the exchange reaction, although the exchange was not totally halted as occurred with NO addition.

$$NO + CH_4 + CD_4$$

Since NO poisons the CH₄-CD₄ exchange reaction, it appears that cleavage of C-H bonds may be difficult in the presence of NO To test this possibility, CD₄, CH₄, and NO were circulated over the catalyst at 320°C The results are shown in Fig 7 The initial rate of disappearance of CH₄ is about 1 9 times faster than the rate of disappearance of CD₄ No intermolecular H/D exchange occurred

$$^{14}N_2O + ^{15}NO + CH_4$$

In order to test whether N₂O is a true gas phase intermediate in the reduction of NO

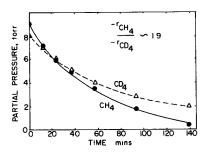


FIG 7 Comparison of reactivity of CH₄ and CD₄ during reduction of NO over Rh/Al₂O₃ at 320°C

with CH₄, an experiment was run with a mixture containing ¹⁴N₂O ¹⁵NO CH₄ = 15 20 20 Torr No mixed ¹⁴N¹⁵N dinitrogen molecules were observed among the products The ¹⁴N₂/¹⁵N₂ ratio in the products is shown in Fig 8 as a function of time. The ratio has a finite, nonzero intercept of about 1 5 and then goes through a maximum at about 3 5 before beginning to fall as the reaction proceeds. Had the reaction been allowed to go to completion where all the nitrogen oxide molecules had disappeared, the ratio would have decreased to a limiting value of 1 5 which reflects the ratio of ¹⁴N/¹⁵N in the initial mixture

DISCUSSION

NO Decomposition

NO decomposition is initially fast but slows down as the catalyst becomes poisoned From the deficiency of oxygen atoms (relative to N atoms) among the gaseous products, the poisoning must be due to the build-up of oxygen atoms on the catalyst surface. This is supported by the fact that the catalyst activity is much lower on an oxidized surface than on a reduced surface.

The NO-Rh/Al₂O₃ system certainly deviates from ideal behavior. The number of active sites changes as the reaction proceeds, the oxidation state of the catalyst is not constant, and there must certainly be a change in the heat of adsorption of NO with coverage. Nevertheless, the initial rate data of NO decomposition can be described at

FIG 8 Ratio of $^{14}N_2/^{15}N_2$ products during reduction of $^{14}N_2O^{-15}NO-CH_4$ mixture over 0.5 g Rh/Al₂O₃ at 320°C

least qualitatively by a simple dual-site Langmuir-Hinshelwood rate model of the form

Initial Rate =
$$\frac{kK_{NO}^2 P_{NO}^2}{(1 + K_{NO} P_{NO})^2}$$
 (1)

where k is the reaction rate constant, K_{NO} is the adsorption equilibrium constant for NO, and P_{NO} is the partial pressure of NO For strong NO adsorption, $K_{NO}P_{NO} \gg 1$ and Eq. (1) reduces to

Initial rate =
$$k$$
 (2)

Under these conditions, the reaction rate constant k (which is the same as the turnover frequency) was determined to be 4.9×10^{-3} (NO molecules)/(Rh_s sec) at 320° C

The discrepancy between the observed NO molecules that are decomposed (5 6 - 14 0 \times 10¹⁹/g) and the number of Rh atoms in the catalyst (2 9 \times 10¹⁹/g) can possibly be rationalized by the stoichiometric reaction

$$6NO + 2Rh \rightarrow Rh_2O_3 + 3N_2O \qquad (3)$$

If every Rh in the catalyst were converted to inactive Rh_2O_3 , this would account for 8.8×10^{19} /g NO molecules reacted, which is in the middle range of the values observed in several experiments

N₂O Decomposition

In contrast to NO decomposition at 320°C, N₂O decomposition over Rh/Al₂O₃ is an extremely rapid, catalytic process. The reaction temperature was lowered to 150°C in order to obtain reliable initial kinetic rate data. The initial rate dependence on N₂O pressure can be described by a single-site Langmuir—Hinshelwood equation involving moderate adsorption of N₂O, viz

Initial rate =
$$\frac{kK_{N_2O}P_{N_2O}}{1 + K_{N_2O}P_{N_2O}}$$
 (4)

where k is again the reaction rate constant, $K_{\rm N2O}$ is the adsorption equilibrium constant for N₂O, and $P_{\rm N2O}$ is the partial pressure of N₂O At 150°C this expression adequately

fits the initial rate data when $k=5.5\times10^{-4}$ (N₂O molecules)/(Rh_s sec) Since oxygen is a product of N₂O decomposition and inhibits N₂O decomposition, the more generally correct rate expression should contain a term in the denominator that indicates this poisoning However, since such a small amount of O₂ (as little as 600 N/m²) poisoned the reaction, no attempt was made to quantitatively describe this term

A mechanism that is consistent with the observed rate expression is the same as that described by Winter (20, 21) where

$$N_2O \rightleftharpoons (N_2O)_a$$
 (5)

$$(N_2O)_a \to N_2 + (O)_a$$
 (6)

$$(O)_a + (O)_a \rightleftharpoons O_2 \tag{7}$$

It is assumed that step (6) is rate limiting Over an Fe-Y zeolite Fu et al (22) used isotopic tracers to identify the reaction

$$N_2O + (O)_a \rightarrow N_2 + O_2$$
 (8)

as a major step for catalyst reduction We do not believe this correctly describes our catalyst, since Eq (8) implies that the presence of oxygen would have a beneficial effect on the reaction rate, contrary to the observations

As shown in Fig. 3, NO poisons N₂O decomposition Since N₂O decomposition is very fast at 320°C, this poisoning effect by NO explains why N_2O is observed as a product in NO reduction and decomposition reactions This also explains the temperature dependence of the ratio of N₂O to N₂ at low conversions in the reduction of NO by CH₄ NO and N₂O apparently compete for the same active sites. The fact that NO is more strongly adsorbed at 200°C than is N₂O indicates that NO has a higher heat of adsorption than does N₂O At 320°C, as soon as N₂O is formed it is rapidly displaced from the surface by NO before it has a chance to decompose However, at higher temperatures, the selectivity for NO adsorption is thermally minimized so that above 400°C the N2O that is formed immediately decomposes to N₂

Reduction of NO by CO

The catalyst poisoning that was observed in NO decomposition at 320°C was not observed when CO was added to the system Complete NO conversion was attained in roughly 20 min, and the reaction was probably limited by the stirring rate in the recirculation reactor When the reaction is not transport limited (e g, at 135°C), the initial rate data can be described very well by the equation

Initial rate

$$=\frac{kK_{\rm NO}^2P_{\rm NO}^2}{(1+K_{\rm NO}P_{\rm NO}+K_{\rm CO}P_{\rm CO})^2} \quad (9)$$

where k is the reaction rate constant, $K_{\rm NO}$ and $K_{\rm CO}$ are the adsorption equilibrium constants, and $P_{\rm NO}$ and $P_{\rm CO}$ are the partial pressures of NO and CO, respectively For weak CO adsorption where $(1 + K_{\rm NO}P_{\rm NO}) \gg K_{\rm CO}P_{\rm CO}$, Eq (9) reduces to

Initial rate =
$$\frac{kK_{\text{NO}}^2 P_{\text{NO}}^2}{(1 + K_{\text{NO}} P_{\text{NO}})^2}$$
 (10)

where $k = 3.20 \times 10^{-2}$ (NO molecules)/ (Rh_s sec) at 135°C This is exactly the same as Eq (1) except that the rate constant in the presence of CO is several orders of magnitude greater than the constant for the NO decomposition alone

A possible mechanism which is consistent with this rate expression is

$$NO \rightleftharpoons (NO)_a$$
 (11)

$$2(NO)_a \xrightarrow{} (N_2O)_a + (O)_a$$
 (12)

$$(N_2O)_a \rightleftharpoons N_2O$$
 (13)

$$(N_2O)_a \to N_2 + (O)_a$$
 (14)

$$CO \rightleftharpoons (CO)_a$$
 (15)

$$(CO)_a + (O)_a \rightarrow CO_2 \tag{16}$$

Evidence for steps (12), (13), and (14) will be presented in the next section. The mechanism involves an oxidation of the catalyst by NO and N₂O (steps (12) and (14)) followed by reduction of the catalyst (step (16)) Step (13) becomes less important at higher temperatures

Reduction of NO with CH4

Although not so efficient as CO, CH₄ also removes adsorbed oxygen atoms and thus maintains the activity of Rh/Al₂O₃

A kinetic study of this reaction is difficult for a number of reasons First, the reaction products, particularly H₂O, compete for the active sites with the reactants. This may disguise the true reaction kinetics and cause the conversion-versus-time plots to be nonlinear even at low conversions Another difficulty in determining the reaction kinetics stems from the reaction exothermicity, about 1170 kJ/mole This makes temperature control difficult Third, the oxidation state of the catalyst almost certainly changes during the reaction, which causes changes in the heats of adsorption with coverage and deviations from ideal adsorption Furthermore, the chemisorption studies done by Shelef and Otto (23, 24) show that NO adsorption fits Freundlich type equations rather than Langmuir isotherms Finally, the reduction of NO with CH₄ does not involve a single-step surface process but rather must involve a series of consecutive reactions All these reasons combine to discourage any attempts to describe the reaction kinetics in terms of ideal Langmuir-Hinshelwood or Eley-Rideal kinetics The initial rate of reduction of NO with CH4 is less than zero order in NO and about first order in CH₄ The following empirical rate expression adequately fits the initial rate data for NO reduction at 320°C

Initial rate

$$= A \exp(-E/RT)(P_{NO})^{-0.63}(P_{CHa}) \quad (17)$$

where $A = 3.57 \times 10^3 \text{ NO/(Rh}_s \text{ sec (N/m}^2)^{0.37})$ and E = 77 kJ/mole

CH₄-CD₄ Scrambling

The isotopic hydrogen exchange between CH₄ and CD₄ is quite rapid over the Rh catalyst at 320°C However, when either NO or N₂O is present in the gas phase, the exchange ceases This implies that NO, N₂O, and CH₄ are competing for the same

active sites Since CH_2D_2 appears as an initial product, the exchange reaction between CH_4 and CD_4 must involve a mechanism by which more than one hydrogen (deuterium) atom is introduced into methane on each interaction of methane with the catalyst For this multiple exchange to occur, the adsorption of methane probably involves several sites. Adsorption of NO or N_2O on any of these sites would inhibit the dissociative adsorption of CH_4 . This poisoning suggests that the cleavage of C-H and C-D bonds may be difficult in presence of N_2O and NO

Kinetic Isotope Effect

When CD₄ was substituted for CH₄, the rate of NO reduction was decreased by a factor of 1.9 The kinetic isotope effect, along with the first order rate dependence on CH₄, suggests that dissociative adsorption of CH₄ may be involved in the rate limiting step in the reduction of NO with CH₄ A similar kinetic isotope effect was found by Hu and Hightower (14) for NO reduction by methane over Pt/Al₂O₃

Role of N₂O

A fundamental question about NO decomposition and reduction is whether N_2 comes directly from NO or whether N_2 O is an exclusive intermediate in the formation of N_2 As pointed out by Hu and Hightower (14), N_2 O may be an exclusive adsorbed intermediate without being an intermediate in the gas phase Although the question about the gas phase intermediacy can be tested directly with isotopic tracers, the issue of adsorbed N_2 O intermediacy can only be relegated to the realm of speculation based on indirect evidence If N_2 O and N_2 are formed in parallel reactions, viz

$$2NO \bigvee_{N_2}^{N_2O}$$

$$(18)$$

then if both N₂O and N₂ formation have similar kinetic expressions, the ratio of

 N_2O/N_2 should be constant as the reaction proceeds On the other hand, if N_2O is an exclusive intermediate in the formation of N_2 , viz

$$NO \rightarrow N_2O \rightarrow N_2 \tag{19}$$

then the ratio of N_2O to N_2 should be large initially and decrease as the reaction proceeds This latter case was observed in the present study, although the initial ratio did not approach infinity

The experiment with ¹⁴N₂O, ¹⁵NO, and CH₄ (Fig 8) was designed to examine the role of N₂O in the reduction of NO with CH₄ If N₂O were a true gas phase intermediate, then the ratio of ¹⁴N₂/¹⁵N₂ should approach infinity at t = 0 If N_2O and N_2 are formed in parallel reactions with N2O decomposition (reduction) providing only a minor pathway for N₂ formation, then the ratio ¹⁴N₂/¹⁵N₂ should approach a value near zero at t = 0 The results in Fig. 8 represent neither extreme case and indicate that both the parallel (Eq. (18)) and series (Eq (19)) reaction schemes are followed simultaneously In other words, both N2 and N₂O are primary products, and N₂O is not an exclusive gas phase intermediate in the overall reduction of NO by methane

We cannot, however, rule out the possibility that adsorbed N₂O is an exclusive surface intermediate in NO reduction If the NO first is adsorbed on a reduced site and disproportionates ınto adsorbed $(N_2O)_a$ (Eqs. (11) and (12)), this species can either be desorbed as gaseous N₂O (Eq (13)) or be reduced further to N_2 and $(O)_a$ (Eq. (14)) At 320°C the $(N_2O)_a$ and gaseous N₂O are in pseudo equilibrium, thus accounting for the finite nonzero intercept in Fig 8 This scheme will also explain the results of the temperature dependence of the ratio N₂O/N₂

Mechanism of NO Reduction With CH4

The kinetic expression for the reduction of NO by CH₄ is not inconsistent with an Eley-Rideal mechanism where the rate lim-

iting step involves the reaction of a gas phase methane molecule with adsorbed oxygen atoms. However, we do not think it is reasonable that one gas phase methane molecule would react with four adsorbed oxygen atoms at the same time to yield CO₂ and H₂O. All the adsorption, decomposition, and disproportionation steps discussed to this point are probably involved in the reduction of NO by methane. In addition, other reactions involving CH₄ dissociation and formation of CO species on the surface may also be involved in this highly complex reaction. A summary of most of these reactions follows

$$NO \rightleftharpoons (NO)_a$$
 (11)

$$2(NO)_a \rightarrow (N_2O)_a + (O)_a$$
 (12)

$$(N_2O)_a \to N_2 + (O)_a$$
 (14)

$$(N_2O)_a \rightleftharpoons N_2O \tag{13}$$

$$CH_4 \rightleftharpoons (CH_3)_a + (H)_a$$
 (20)

$$CH_4 \rightleftharpoons (CH_2)_a + 2(H)_a$$
 (21)

$$(CH_3)_a \rightleftharpoons (CH_2)_a + (H)_a$$
 (22)

$$(CH_2)_a \rightleftharpoons (CH)_a + (H)_a$$
 (23)

$$(CH)_a \rightleftharpoons (C)_a + (H)_a$$
 (24)

$$(C)_a + (O)_a \rightarrow (CO)_a \tag{25}$$

$$(CO)_a + (O)_a \rightarrow CO_2 \tag{16}$$

$$(H)_a + (O)_a \rightarrow (OH)_a \tag{26}$$

$$(OH)_a + (H)_a \rightarrow H_2O \tag{27}$$

$$(NO)_a + (O)_a \rightleftharpoons (NO_2)_a$$
 (28)

$$(NO2)a + (O)a \rightleftharpoons (NO3)a$$
 (29)

$$(CH_2)_a + (O)_a \rightarrow (CH_2O)_a$$
 (30)

$$(CH_2O)_a + (O)_a \rightarrow (CO)_a + H_2O$$
 (31)

Normally, steps 20–24 are quite facile and rapidly approach equilibrium, as indicated by the rapid H–D scrambling of CH₄–CD₄ mixtures However, in the presence of NO or N₂O, these reactions are greatly impeded as the nitrogen oxides compete very successfully for the active Rh sites In fact, under these conditions it is one (or more) of

the C-H bond breaking steps that is rate limiting

This is essentially the same mechanism reported by Hu and Hightower (14) for their Pt/Al₂O₃ The key assumptions of the scheme are that 2 NO molecules disproportionate on the catalyst to form (N₂O)_a and (O)_a The (N₂O)_a either desorbs to form gaseous N₂O or decomposes (is reduced) to form N_2 and $(O)_a$ The role of the reductant CH₄ is to remove adsorbed oxygen which keeps the catalyst in an active reduced state Although this mechanism is similar to the one presented for reduction of NO by CO, there is at least one major difference The rate limiting step in CO reduction of NO probably involves the surface reaction of two NO molecules, while in this scheme the rate limiting step probably involves the breaking of carbon-hydrogen bonds in methane

ACKNOWLEDGMENTS

The authors gratefully acknowledge financial support from the Robert A Welch Foundation, the National Science Foundation (Grant Number CHE 77-10541), and Haldor Topsøe A/S (Copenhagen, Denmark)

REFERENCES

Shelef, M, and Otto, K, J Catal 12, 361 (1968)
 London, J W, and Bell, A T, J Catal 31, 96 (1973)

- 3 Sugi, Y , Todo, N , and Sato, T , Bull Chem Soc Japan 48, 337 (1975)
- 4 Nozaki, F, Matsukawa, F, and Mano, F, Bull Chem Soc Japan 48, 2764 (1975)
- 5 Schleppy, R, and Shah, Y T, Ind Eng Chem, Prod Res Devel 15, 172 (1976)
- 6 Lorimer, D, and Bell, A T, J Catal 59, 223 (1979)
- 7 IIzuka, T, and Lunsford, J H, J Mol Catal 8, 391 (1980)
- 8 Dubois, L H, Hansma, P K, and Somorjai, G A, J Catal 65, 318 (1980)
- 9 Ayen, R J, and Nf, Y-S, Intern J Air Water Pollution 10, 1 (1966)
- 10 Ayen, R J, and Peters, M S, Ind Eng Chem Process Design Develop 1, 205 (1962)
- 11 Peters, M S, AEC TID-18423 (1963)
- 12 Sotoodehnia-Korrani, A, and Nobe, K, Ind Eng Chem Process Design Develop 9, 326 (1970)
- 13 Ault, J W, and Ayen, R J, AIChE J 17, 265 (1971)
- 14 Hu, Y-H, and Hightower, J W, Preprints, ACS Div Petro Chem 21, 841 (1976)
- 15 Bauerle, G L, Service, G R, and Nobe, K, Ind Eng Chem Prod Res Develop 11, 54 (1972)
- 16 Taylor, K. C., in "The Catalytic Chemistry of Nitrogen Oxides" (R. L. Klimisch and J. G. Lardon, Eds.), p. 173 Plenum Press, New York, 1975
- 17 Taylor, K. C., and Schlatter, J. C., J. Catal. 63, 53 (1980)
- 18 Hardee, J R, and Hightower, J W, J Catal 83, 182 (1983)
- 19 Schissler, D O, Thompson, S O, and Turkevich, J, J Disc Faraday Soc 10, 46 (1951)
- 20 Winter, E R S, J Catal 15, 144 (1969)
- 21 Winter, E R S, J Catal 19, 32 (1970)
- 22 Fu, C M, Korchak, V N, and Hall, W K, J Catal 68, 166 (1981)
- 23 Otto, K, and Shelef, M, J Catal 14, 226 (1969)
- 24 Otto, K, and Shelef, M, J Catal 18, 184 (1970)